业务背景
在B2B商城运营中,客户流失是一个普遍且严重的问题:
- 30%的客户每月订单≤1次,处于"低活跃"状态
- 沉睡客户唤醒成本远低于新客户获取成本(1:5)
- 精准推荐核心品种可将激活成功率提升60%+
本文将从技术实现和业务优化两个维度,详细讲解如何设计一套实用的低活客户激活报表系统。
核心需求
业务目标
- 识别低活客户:9月订单≤1次的客户
- 分析核心品种:每个客户的Top 20常购商品
- 指导销售行动:提供精准的商品推荐清单
关键指标
| 指标 | 说明 | 业务价值 |
|---|---|---|
| 客户编号/名称 | 唯一标识客户 | 销售人员快速定位 |
| 9月订单数 | 低活判断依据 | 区分沉睡程度 |
| 商品订购次数 | 核心品种判断 | 购买频率越高越核心 |
| 总金额/总数量 | 采购规模 | 评估客户价值 |
| 首次/最后购买时间 | 购买周期 | 判断复购周期 |
技术实现
数据库表结构(通用化设计)
-- 1. 客户主表
CREATE TABLE customer_info (
customer_id VARCHAR(20) PRIMARY KEY,
customer_name NVARCHAR(100),
customer_type VARCHAR(20), -- retail:零售 wholesale:批发
status TINYINT DEFAULT 1 -- 1:正常 0:停用
);
-- 2. 销售单主表
CREATE TABLE sales_order (
order_id VARCHAR(20) PRIMARY KEY,
customer_id VARCHAR(20),
order_time DATETIME,
order_status VARCHAR(10), -- 01:正常 02:已取消
order_type VARCHAR(10), -- 05:销售单 06:退货单
total_amount DECIMAL(18,2)
);
-- 3. 销售单明细表
CREATE TABLE sales_order_detail (
detail_id VARCHAR(20) PRIMARY KEY,
order_id VARCHAR(20),
product_id VARCHAR(20),
quantity DECIMAL(18,2),
amount DECIMAL(18,2)
);
-- 4. 商品主表
CREATE TABLE product_info (
product_id VARCHAR(20) PRIMARY KEY,
product_name NVARCHAR(100),
specifications NVARCHAR(50),
manufacturer NVARCHAR(100),
unit NVARCHAR(20)
);
核心SQL实现(Oracle版本)
WITH
-- ========== 第一步:识别低活客户(9月订单≤1次)==========
LowActiveCustomers AS (
SELECT
C.customer_id AS CUST_NO,
C.customer_name AS CUST_NAME,
COUNT(DISTINCT SO.order_id) AS SEPT_ORDER_COUNT
FROM
sales_order SO
LEFT JOIN customer_info C ON C.customer_id = SO.customer_id
WHERE
SO.order_status = '01' -- 正常单据
AND SO.order_type = '05' -- 仅统计销售单
AND SO.order_time >= TO_DATE('2024-09-01', 'YYYY-MM-DD')
AND SO.order_time < TO_DATE('2024-10-01', 'YYYY-MM-DD')
GROUP BY
C.customer_id, C.customer_name
HAVING
COUNT(DISTINCT SO.order_id) <= 1 -- 低活标准:≤1次
),
-- ========== 第二步:提取低活客户的历史采购明细(7-9月)==========
CustomerSalesHistory AS (
SELECT
LAC.CUST_NO,
LAC.CUST_NAME,
LAC.SEPT_ORDER_COUNT,
SOD.product_id AS GOODS_NO,
P.product_name AS GOODS_NAME,
P.specifications AS SPECS,
P.manufacturer AS FACTORY,
P.unit AS UNIT,
SO.order_id AS BILL_NO,
SO.order_time AS BILL_TIME,
SOD.quantity AS QTY,
SOD.amount AS AMOUNT
FROM
LowActiveCustomers LAC
INNER JOIN sales_order SO ON SO.customer_id = LAC.CUST_NO
LEFT JOIN sales_order_detail SOD ON SO.order_id = SOD.order_id
LEFT JOIN product_info P ON P.product_id = SOD.product_id
WHERE
SO.order_status = '01'
AND SO.order_type = '05'
AND SO.order_time >= TO_DATE('2024-07-01', 'YYYY-MM-DD')
AND SO.order_time < TO_DATE('2024-10-01', 'YYYY-MM-DD')
AND SOD.product_id IS NOT NULL
),
-- ========== 第三步:按客户+商品统计核心指标 ==========
CustomerProductStats AS (
SELECT
CUST_NO,
CUST_NAME,
SEPT_ORDER_COUNT,
GOODS_NO,
GOODS_NAME,
SPECS,
FACTORY,
UNIT,
COUNT(DISTINCT BILL_NO) AS ORDER_COUNT, -- 订购次数
SUM(QTY) AS TOTAL_QTY, -- 总数量
SUM(AMOUNT) AS TOTAL_AMOUNT, -- 总金额
ROUND(AVG(QTY), 2) AS AVG_QTY_PER_ORDER, -- 单均数量
ROUND(AVG(AMOUNT), 2) AS AVG_AMOUNT_PER_ORDER, -- 单均金额
MIN(BILL_TIME) AS FIRST_BUY_TIME, -- 首次购买
MAX(BILL_TIME) AS LAST_BUY_TIME -- 最后购买
FROM
CustomerSalesHistory
GROUP BY
CUST_NO, CUST_NAME, SEPT_ORDER_COUNT,
GOODS_NO, GOODS_NAME, SPECS, FACTORY, UNIT
),
-- ========== 第四步:商品排序(每个客户取Top 20)==========
RankedProducts AS (
SELECT
CUST_NO AS 客户编号,
CUST_NAME AS 客户名称,
SEPT_ORDER_COUNT AS 九月订单数,
GOODS_NO AS 商品编号,
GOODS_NAME AS 商品名称,
SPECS AS 规格,
FACTORY AS 厂家,
UNIT AS 单位,
ORDER_COUNT AS 订单次数,
TOTAL_QTY AS 总数量,
TOTAL_AMOUNT AS 总金额,
AVG_QTY_PER_ORDER AS 单均数量,
AVG_AMOUNT_PER_ORDER AS 单均金额,
FIRST_BUY_TIME AS 首次购买时间,
LAST_BUY_TIME AS 最后购买时间,
ROW_NUMBER() OVER (
PARTITION BY CUST_NO
ORDER BY ORDER_COUNT DESC, TOTAL_AMOUNT DESC, TOTAL_QTY DESC
) AS RANK_IN_CUSTOMER
FROM
CustomerProductStats
)
-- ========== 第五步:输出最终结果 ==========
SELECT
客户编号,
客户名称,
九月订单数,
RANK_IN_CUSTOMER AS 排名,
商品编号,
商品名称,
规格,
厂家,
单位,
订单次数,
总数量,
总金额,
单均数量,
单均金额,
TO_CHAR(首次购买时间, 'YYYY-MM-DD') AS 首次购买时间,
TO_CHAR(最后购买时间, 'YYYY-MM-DD') AS 最后购买时间
FROM
RankedProducts
WHERE
RANK_IN_CUSTOMER <= 20 -- 每个客户取前20个核心品种
ORDER BY
客户名称, -- 按客户名称排序
排名; -- 按排名排序
SQL Server版本适配
-- 日期函数差异
-- Oracle: TO_DATE('2024-09-01', 'YYYY-MM-DD')
-- SQL Server: CONVERT(DATE, '2024-09-01')
-- 字符串连接差异
-- Oracle: '客户' || customer_name
-- SQL Server: '客户' + customer_name 或 CONCAT('客户', customer_name)
-- 分页差异
-- Oracle: ROWNUM <= 20
-- SQL Server: TOP 20 或 OFFSET/FETCH
查询结果示例
| 客户编号 | 客户名称 | 九月订单数 | 排名 | 商品名称 | 订单次数 | 总金额 | 单均数量 | 最后购买时间 |
|---|---|---|---|---|---|---|---|---|
| C10001 | 北京同仁堂药店 | 1 | 1 | 阿莫西林胶囊 | 8 | 12,500.00 | 50 | 2024-09-15 |
| C10001 | 北京同仁堂药店 | 1 | 2 | 头孢克肟分散片 | 7 | 10,800.00 | 40 | 2024-08-28 |
| C10001 | 北京同仁堂药店 | 1 | 3 | 布洛芬缓释胶囊 | 6 | 8,600.00 | 30 | 2024-09-10 |
| C10002 | 上海华氏大药房 | 0 | 1 | 维生素C片 | 5 | 6,500.00 | 100 | 2024-07-20 |
| C10002 | 上海华氏大药房 | 0 | 2 | 感冒灵颗粒 | 5 | 5,200.00 | 80 | 2024-08-05 |
业务优化方案
一、时间维度优化
1.1 同比分析(推荐度:★★★★★)
核心价值:考虑季节性因素,推荐去年同期畅销品
-- 增加去年同期对比
WITH LastYearSales AS (
SELECT
customer_id,
product_id,
SUM(quantity) AS last_year_qty,
SUM(amount) AS last_year_amount
FROM sales_order SO
JOIN sales_order_detail SOD ON SO.order_id = SOD.order_id
WHERE
order_time >= TO_DATE('2023-10-01', 'YYYY-MM-DD')
AND order_time < TO_DATE('2023-11-01', 'YYYY-MM-DD')
GROUP BY customer_id, product_id
)
业务应用:
- 场景:10月激活客户时,推荐去年10月该客户购买的商品
- 话术:"张经理,去年这个时候您采购了100盒感冒灵,现在正值换季..."
1.2 购买周期分析(推荐度:★★★★★)
核心价值:预测客户下次订货时间,主动出击
-- 计算平均购买周期
SELECT
customer_id,
product_id,
AVG(DATEDIFF(day, prev_order_time, order_time)) AS avg_cycle_days,
MAX(order_time) AS last_buy_time,
MAX(order_time) + avg_cycle_days AS expected_next_buy_time
FROM (
SELECT
customer_id,
product_id,
order_time,
LAG(order_time) OVER (PARTITION BY customer_id, product_id ORDER BY order_time) AS prev_order_time
FROM sales_order SO
JOIN sales_order_detail SOD ON SO.order_id = SOD.order_id
) t
WHERE prev_order_time IS NOT NULL
GROUP BY customer_id, product_id;
业务应用:
- 预测:客户平均30天采购一次,上次购买已过35天 → 高优先级联系
- 触发:自动生成待联系清单,发送提醒通知
二、客户分层优化
2.1 客户价值分层(推荐度:★★★★★)
核心价值:区分高价值和低价值客户,差异化激活策略
-- RFM模型分层
WITH CustomerRFM AS (
SELECT
customer_id,
DATEDIFF(day, MAX(order_time), GETDATE()) AS Recency, -- 最近一次消费
COUNT(DISTINCT order_id) AS Frequency, -- 消费频率
SUM(total_amount) AS Monetary, -- 消费金额
CASE
WHEN SUM(total_amount) >= 100000 THEN 'A类'
WHEN SUM(total_amount) >= 50000 THEN 'B类'
WHEN SUM(total_amount) >= 10000 THEN 'C类'
ELSE 'D类'
END AS customer_level
FROM sales_order
WHERE order_time >= DATEADD(year, -1, GETDATE())
GROUP BY customer_id
)
激活策略矩阵:
| 客户层级 | 年采购额 | 激活策略 | 优惠力度 | 业务员级别 |
|---|---|---|---|---|
| A类(重要低活) | ≥10万 | 总经理亲访 + 定制方案 | 8.5折 + VIP服务 | 总经理/销售总监 |
| B类(价值客户) | 5-10万 | 业务经理拜访 | 9折 + 赠品 | 业务经理 |
| C类(普通客户) | 1-5万 | 电话营销 | 9.5折 | 普通业务员 |
| D类(小客户) | <1万 | 自动化营销 | 无优惠/小礼品 | 客服 |
2.2 流失阶段分层(推荐度:★★★★☆)
核心价值:根据沉睡时长,制定不同唤醒方案
SELECT
customer_id,
customer_name,
DATEDIFF(day, last_order_time, GETDATE()) AS days_since_last_order,
CASE
WHEN DATEDIFF(day, last_order_time, GETDATE()) <= 30 THEN '健康期'
WHEN DATEDIFF(day, last_order_time, GETDATE()) <= 60 THEN '预警期'
WHEN DATEDIFF(day, last_order_time, GETDATE()) <= 90 THEN '沉睡期'
WHEN DATEDIFF(day, last_order_time, GETDATE()) <= 180 THEN '流失期'
ELSE '死亡期'
END AS status_stage
FROM (
SELECT customer_id, MAX(order_time) AS last_order_time
FROM sales_order
GROUP BY customer_id
) t
JOIN customer_info C ON C.customer_id = t.customer_id;
阶段化策略:
| 阶段 | 天数 | 激活难度 | 优先级 | 策略 |
|---|---|---|---|---|
| 预警期 | 30-60天 | ★☆☆☆☆ | 最高 | 电话问候 + 新品推荐 |
| 沉睡期 | 60-90天 | ★★☆☆☆ | 高 | 优惠券 + 拜访 |
| 流失期 | 90-180天 | ★★★☆☆ | 中 | 大力度优惠 + 高层拜访 |
| 死亡期 | >180天 | ★★★★★ | 低 | 放弃或极低成本尝试 |
三、商品维度优化
3.1 季节性商品标记(推荐度:★★★★☆)
核心价值:避免推荐过季商品,提升转化率
-- 商品季节性分析
WITH ProductSeasonality AS (
SELECT
product_id,
MONTH(order_time) AS sales_month,
SUM(quantity) AS monthly_qty
FROM sales_order SO
JOIN sales_order_detail SOD ON SO.order_id = SOD.order_id
WHERE order_time >= DATEADD(year, -2, GETDATE())
GROUP BY product_id, MONTH(order_time)
),
ProductSeasonScore AS (
SELECT
product_id,
sales_month,
monthly_qty,
AVG(monthly_qty) OVER (PARTITION BY product_id) AS avg_qty,
CASE
WHEN monthly_qty > AVG(monthly_qty) OVER (PARTITION BY product_id) * 1.5
THEN '旺季商品'
ELSE '常规商品'
END AS season_type
FROM ProductSeasonality
)
SELECT * FROM ProductSeasonScore
WHERE sales_month = MONTH(GETDATE()); -- 当月旺季商品
商品打标:
常规品:阿莫西林、布洛芬(全年推荐)
春季品:抗过敏药(3-5月重点推)
夏季品:藿香正气水(6-8月重点推)
秋冬品:感冒灵、板蓝根(10-2月重点推)
冬季品:维生素AD(11-1月重点推)
3.2 新品推荐(推荐度:★★★★☆)
核心价值:为客户推荐他没买过、但同类客户在买的商品
-- 协同过滤推荐
WITH SimilarCustomers AS (
-- 找到与目标客户购买行为相似的客户
SELECT
C1.customer_id AS target_customer,
C2.customer_id AS similar_customer,
COUNT(DISTINCT C1.product_id) AS common_products
FROM (
SELECT DISTINCT customer_id, product_id
FROM sales_order SO
JOIN sales_order_detail SOD ON SO.order_id = SOD.order_id
) C1
JOIN (
SELECT DISTINCT customer_id, product_id
FROM sales_order SO
JOIN sales_order_detail SOD ON SO.order_id = SOD.order_id
) C2 ON C1.product_id = C2.product_id AND C1.customer_id <> C2.customer_id
GROUP BY C1.customer_id, C2.customer_id
HAVING COUNT(DISTINCT C1.product_id) >= 5 -- 至少5个共同商品
),
RecommendProducts AS (
-- 推荐相似客户买过、但目标客户没买的商品
SELECT
SC.target_customer,
SOD.product_id,
P.product_name,
COUNT(DISTINCT SO.customer_id) AS buyers_count,
SUM(SOD.amount) AS total_sales
FROM SimilarCustomers SC
JOIN sales_order SO ON SO.customer_id = SC.similar_customer
JOIN sales_order_detail SOD ON SO.order_id = SOD.order_id
JOIN product_info P ON P.product_id = SOD.product_id
WHERE NOT EXISTS (
-- 目标客户没买过
SELECT 1 FROM sales_order SO2
JOIN sales_order_detail SOD2 ON SO2.order_id = SOD2.order_id
WHERE SO2.customer_id = SC.target_customer
AND SOD2.product_id = SOD.product_id
)
GROUP BY SC.target_customer, SOD.product_id, P.product_name
)
SELECT * FROM RecommendProducts
ORDER BY buyers_count DESC, total_sales DESC;
业务话术:
"张经理,我们发现和您采购习惯相似的10家客户,最近都在采购XX商品,月均订货3次,是不是也考虑了解一下?"
四、行动指引优化(最重要)
4.1 智能销售话术生成
完整客户激活卡片:
╔════════════════════════════════════════════════════════════╗
║ 【客户激活行动卡】 ║
╠════════════════════════════════════════════════════════════╣
║ 客户信息 ║
║ • 客户名称:北京同仁堂药店(C10001) ║
║ • 客户等级:A类客户(年采购50万) ║
║ • 流失阶段:沉睡期(90天未下单) ║
║ • 历史订单:年均24次,平均15天/次 ║
║ • 负责业务员:张三(13800138000) ║
╠════════════════════════════════════════════════════════════╣
║ 核心推荐品种(Top 5) ║
║ 1. 阿莫西林胶囊 历史8次 上次购买:35天前 [到期] ║
║ 2. 头孢克肟分散片 历史7次 上次购买:60天前 [预警] ║
║ 3. 布洛芬缓释胶囊 历史6次 上次购买:45天前 [到期] ║
║ 4. 感冒灵颗粒(季节品) 去年10月购买5次 [当季推荐] ║
║ 5. 维生素C泡腾片(新品) 同类客户热购 [新品推荐] ║
╠════════════════════════════════════════════════════════════╣
║ 激活方案 ║
║ • 优惠力度:8.5折 + 赠品(总价值≥2000元可用) ║
║ • 联系时间:周二上午10:00(客户采购习惯时间) ║
║ • 联系方式:电话+上门拜访 ║
║ • 业务员级别:业务经理或以上 ║
╠════════════════════════════════════════════════════════════╣
║ 话术模板 ║
║ "张经理您好,我是XX公司小王。看到您已经35天没下单了, ║
║ 您常用的阿莫西林、头孢克肟库存还够吗?现在正值换季, ║
║ 感冒药需求量大,去年这个时候您采购了5次感冒灵。 ║
║ 这次给您申请了8.5折优惠,满2000还有赠品,我明天上午 ║
║ 10点过来拜访您,顺便带几个新品样品给您看看?" ║
╠════════════════════════════════════════════════════════════╣
║ 成功率预测:★★★★☆ 68% ║
║ (基于历史数据:A类客户+沉睡期+8.5折优惠 = 68%激活率) ║
╚════════════════════════════════════════════════════════════╝
4.2 待办事项自动生成
CRM系统集成:
-- 生成销售待办任务
INSERT INTO crm_task (
task_id,
customer_id,
task_type,
priority,
assigned_to,
scheduled_time,
task_content,
expected_result
)
SELECT
NEWID(),
customer_id,
'客户激活',
CASE
WHEN customer_level = 'A类' THEN '紧急'
WHEN customer_level = 'B类' THEN '重要'
ELSE '普通'
END,
salesman_id,
CASE
WHEN preferred_contact_time IS NOT NULL
THEN preferred_contact_time
ELSE DATEADD(day, 1, GETDATE()) + ' 10:00:00'
END,
'客户' + customer_name + '已' + CAST(days_since_last_order AS VARCHAR) + '天未下单,请联系激活',
'完成订单或记录拒绝原因'
FROM low_active_customers
WHERE customer_level IN ('A类', 'B类'); -- 优先处理高价值客户
五、效果追踪优化
5.1 激活效果监控
-- 激活效果看板
WITH ActivationResult AS (
SELECT
T.task_id,
T.customer_id,
T.created_time AS task_time,
T.completed_time,
CASE
WHEN EXISTS (
SELECT 1 FROM sales_order SO
WHERE SO.customer_id = T.customer_id
AND SO.order_time >= T.created_time
AND SO.order_time <= DATEADD(day, 7, T.created_time)
) THEN '激活成功'
WHEN T.status = '已完成' THEN '激活失败'
ELSE '进行中'
END AS result
FROM crm_task T
WHERE T.task_type = '客户激活'
AND T.created_time >= DATEADD(month, -1, GETDATE())
)
SELECT
result AS 激活结果,
COUNT(*) AS 客户数量,
CAST(COUNT(*) * 100.0 / SUM(COUNT(*)) OVER () AS DECIMAL(5,2)) AS 占比
FROM ActivationResult
GROUP BY result;
效果看板:
╔══════════════════════════════════════════╗
║ 低活客户激活效果看板 ║
╠══════════════════════════════════════════╣
║ 本月激活任务:120个 ║
║ 已完成:95个(79%) ║
║ 激活成功:68个(57%) ║
║ 激活失败:27个(23%) ║
║ 进行中:25个(21%) ║
╠══════════════════════════════════════════╣
║ 平均激活周期:3.5天 ║
║ 激活订单金额:¥328,500 ║
║ 人均激活订单:¥4,831 ║
║ ROI:1:8.5(激活成本 vs 订单金额) ║
╚══════════════════════════════════════════╝
5.2 策略优化分析
-- A/B测试:不同激活策略效果对比
SELECT
activation_strategy AS 激活策略,
COUNT(*) AS 执行次数,
SUM(CASE WHEN result = '成功' THEN 1 ELSE 0 END) AS 成功次数,
CAST(SUM(CASE WHEN result = '成功' THEN 1 ELSE 0 END) * 100.0 / COUNT(*) AS DECIMAL(5,2)) AS 成功率,
AVG(order_amount) AS 平均订单金额,
AVG(activation_cost) AS 平均激活成本,
AVG(order_amount) / AVG(activation_cost) AS ROI
FROM activation_log
GROUP BY activation_strategy
ORDER BY 成功率 DESC;
策略对比结果:
| 激活策略 | 成功率 | 平均订单 | 激活成本 | ROI | 推荐度 |
|---|---|---|---|---|---|
| 高层拜访+大优惠 | 78% | ¥8,500 | ¥800 | 10.6 | ★★★★★ |
| 经理拜访+中优惠 | 65% | ¥5,200 | ¥400 | 13.0 | ★★★★★ |
| 电话营销+小优惠 | 42% | ¥2,800 | ¥50 | 56.0 | ★★★★ |
| 短信营销+无优惠 | 15% | ¥1,500 | ¥5 | 300.0 | ★★★ |
策略建议:
- A类客户:高层拜访+大优惠(ROI最优)
- B类客户:经理拜访+中优惠(成功率与ROI平衡)
- C/D类客户:电话/短信营销(低成本覆盖)
系统实施建议
阶段一:基础报表(1周)
- 实现低活客户识别SQL
- 实现核心品种分析SQL
- 配置定时任务(每周一早8点自动生成)
- 导出Excel报表发给销售团队
阶段二:客户分层(2周)
- 增加RFM客户价值分层
- 增加流失阶段分层
- 增加激活优先级排序
- 为不同层级客户制定差异化策略
阶段三:智能推荐(3-4周)
- 增加同比分析(季节性)
- 增加购买周期预测
- 增加协同过滤新品推荐
- 生成智能话术
阶段四:闭环管理(4-6周)
- 集成CRM系统
- 自动生成销售任务
- 激活效果追踪
- 策略优化迭代
关键成功因素
1. 数据质量(重要性:★★★★★)
常见问题:
• 客户信息不准确(电话号码过期)
• 订单数据缺失(测试单据未过滤)
• 商品分类混乱(无季节性标签)
解决方案:
• 定期清洗客户数据
• 规范订单录入流程
• 完善商品主数据
2. 业务流程(重要性:★★★★★)
错误做法:
• 报表生成后无人跟进
• 销售人员不看报表
• 激活效果无人统计
正确做法:
• 每周一例会通报报表
• 激活任务纳入KPI考核
• 每月复盘优化策略
3. 工具支持(重要性:★★★★)
基础版:Excel + 人工跟进
标准版:BI工具 + 半自动化
高级版:CRM系统 + 全自动化
预期效果
短期效果(1-3个月)
- 低活客户激活率:40-60%
- 激活客户月均订单:2-3次(vs 之前0-1次)
- 销售人员工作效率提升:30%+
长期效果(6-12个月)
- 客户流失率下降:20-30%
- 客户生命周期价值提升:50%+
- 老客户贡献收入占比:从60%提升到75%
扩展阅读
技术栈推荐
- 数据库:Oracle 12c+、SQL Server 2016+、PostgreSQL 13+
- BI工具:Tableau、Power BI、帆软FineReport
- CRM系统:Salesforce、纷享销客、销售易
- 自动化工具:Python + APScheduler、Kettle ETL
总结
低活客户激活不是简单的"发报表",而是一套完整的数据驱动销售体系:
数据分析 → 客户分层 → 智能推荐 → 行动指引 → 效果追踪 → 策略优化
↑ ↓
└──────────────────────── 持续迭代 ────────────────────────┘
从数据报表到销售利器,需要经历三个阶段:
- 看得见:报表能准确识别低活客户和核心品种
- 做得到:销售人员有清晰的行动指引和话术
- 持续优化:建立效果追踪和策略优化机制
希望本文能帮助您建立一套真正有用的低活客户激活体系!
关于作者 codingwhy,专注企业级商城系统开发10年,服务100+B2B企业客户,擅长数据驱动的业务增长方案。